

GHOST RECON: ADVANCED WARFIGHTER 2

- THE EDITOR -

- v1.04 -

By:
Grin_Wolfsong

Assisted by:

Grin_Ichabod

Document Contents

Chapter 1: Getting Started ...3
Requirements ...3
Preparations..3

Chapter 2: Interface..5
Rendering...5
Layers...6
Sub-Layers ...6
Unit List ...7
Commands ...7

Chapter 3: Static Layer ..9
Landscape ..9
Static ..10
Small Static ..10

Chapter 4: Dynamic Layer...11
Cover..11
Vehicle ...11

Chapter 5: Electric Layer ...13
Chapter 6: Sound Layer ...14
Chapter 7: Props Brush Layer..15
Chapter 8: AI Graph Layer ..16

AI Graph Generation..17
Cover Point Generation..17

Chapter 9: Human Layer..18
Chapter 10: Locations Layer..21
Chapter 11: Markers Layer ..22
Chapter 12: Additional Editor Functions...24

First Person Mode..24
Minimap Generation ..24
Cubemap Generation ...25
Lightmap Generation ...26
Silhouette Generation...27
Optimization Tools ..27

Chapter 13: Final Fixes..29
Changing Environment ..29
World Info..30
Texture Scope ..36
Strings ..37
Outro ..37

Appendix 1: Environmental Sound Cues...38
Sound Cues ..38

2

Chapter 1: Getting Started
This tutorial will cover the basics of the editor. Not all the small details, but the basic
stuff you need to know to create a new level from existing units.

The editor provided to the public is the exact same version that has been used by Grin
during the development of GRAW2. It’s not designed especially for public use, which
many other editors released to the public are, and as such it has an interface that is a
bit rough around the edges and not totally logical due to constant changes and
additions to the game functions during development, but I’ll cover all that and try to
straighten things up a bit. It’s also not fully stable so play it safe and save often.

Requirements
The only requirements when working in the editor, besides that you have the
hardware to run the game of course, is that you have a 4 button mouse. The thumb
button [mouse 4] is important for placing units, and you can’t rebind keys in the
editor, so you must have it.

Preparations
The simplest way to keep things clean is to start by defining a new level. If you don’t
do this a default level called “world_xml” will be used. In that case you’ll then have
to move your files into a new folder when you want to share your level, or else all
levels exported with the default folder name will override each other and create
problems for the players, so my suggestion is that you create a new level from the
start. In this document the custom level will be called “tutorial”.

Where the levels folders will be automatically created, when you first start the editor
with a defined name, varies depending on if you are using XP or Vista. In XP they are
created where your game is installed under GRAW2/data/levels/custom_levels. In
Vista all the files are created under your profile, where a GRAW2 folder should be
located with a similar underlying folder structure.

Note: Only use lower case letter for all folder and file names in GRAW2, and no special characters.

Example of new custom level folder called “tutorial” created in XP:

3

To create this new level the best way in the long run is to edit the
“GRAW2_Editor.bat” file to tell it what level you want to work with. If you know a
little bit of BATCH programming you’ll notice when you open it that you don’t have
to edit this file. It uses a wildcard which takes in the string written after the filename
and uses it as the level to work with.

Still, I suggest that you create a copy of “GRAW2_Editor.bat” and then do these
changes inside the copy as that will help you in the future to faster and easier start the
editor with the right level or if you want to create more then one level you can have
one start file for each of them. Just give the new copy a descriptive name, like
“GRAW2_Editor_Tutorial.bat” for example as the level I’m using is called
“tutorial”, so you can easily find it. Inside the copy you should edit the last part so
that it contains the name of your level, which will be the name of the level folder that
will be created, after the “-path” tag and it should work fine.

Contents of GRAW2_Editor_Tutorial.bat:
graw2.exe -o context-editor.xml -path tutorial

With that done you are now ready to start building your level. Run the new
“GRAW2_Editor_Tutorial.bat” start file and let’s take a look at the first steps inside
the editor.

4

Chapter 2: Interface
Once the editor has started you are facing a blank world with a default environment
and nothing else in it. In the upper left corner you can find “layer” and “rendering”
options menus. On the right side you’ll find the “unit list” window, which shows
available units to be placed in some layers and which units have been placed in others.

Tip: All windows inside the editor can be moved around by using the left mouse button, clicking on the
top part of the window, hold down and move.

Rendering
The “rendering” menu decides how you are currently watching the level inside the
editor. This can be useful as you can for example turn to “albedo” and that way turn
of the environment lighting and shadows to get a better look at what the layout of the
level is even when light maps have not yet been rendered.

Rendering options found in the editor:
Albedo Shows the level in only diffuse textures.
Ambient Shows the level in grey with only ambient shadows.
Lighting Shows the level with the assigned environment, like it will look

inside the game.
Normal Shows the level in only normal map textures.

Rendering option examples:

5

Layers
The “layer” menu decides which units are shown in the unit list on the right side of
the screen. It also automatically hides units from other layers then the one being
worked on, with some exceptions for static and dynamic units, to make it easier to
work. Also, only units from the current layer can be selected and edited.

Layers found in the editor:
Static Contains units like landscapes and props. Even props that can be

destroyed are found under static, with the exception of destroyable
vehicle props.

Dynamic Contains working vehicles as well as prop versions of vehicles that
can be destroyed, called covers.

Markers Contains markers used for defining minimap borders,
compass north direction, cinematic points and other things.

Light Contains extra light sources.
Sound Contains sound points used to place environment sounds.
Lightmap
Electric Contains all wires.
Props Brush Contains brushes for grass, small debris, decals and similar.
Human Contains all human AIs.
AI Graph Contains the human and vehicle AI graphs.
Locations Contains all zones.

Sub-Layers
Some layers have sub-layers as well, which allows it to only show parts of the
contents of the layer in the unit list at the time. Like with layers, only units from the
current sub-layer can be selected and edited.

Keys for switching between Static sub-layers:
Ctrl+1 Static (default)
Ctrl+2 Small Static (includes destructible objects)
Ctrl+3 Landscape

Keys for switching between Dynamic sub-layers:
Ctrl+1 Cover (default)
Ctrl+2 Vehicles

The AI Graph layer has a toggle function and will only show one graph at the time as
working with two graphs showing would be very annoying.

Key for toggling between AI Graph sub-layers:
M Toggle between Human (default) and Vehicle graph.

6

Unit List
The contents of the “unit list”, and its existence, vary depending on which layer
you are currently in. It has a “mask” input field which can be used to filter the
contents of the current list. Filtering can only be made from the beginning of the unit
name, and it doesn’t work with wild cards like “*” or “?”.

When in “Light”, “Sound” and “Locations” layers, the unit list contains units that
have placed on in level already, but in all other layers where it’s available it holds all
the units you can select to create.

Commands
The editor is controlled by keyboard shortcuts only, with the exception of the two
menus covered earlier. There is no way around using these, so you simply have to
learn to use them like Grin has.

Alt + F4 Quit Editor
Ctrl + S Save Level
Ctrl + L Load Latest Save
Ctrl + Backspace Generate Lightmaps
Alt + Backspace Generate Silhouettes
Ctrl + K Calculate AI Graph
Ctrl + F Calculate Cover Points (after calculated AI graph)
L Spawn Player (at current tool indicator location)
O Generate Orthographic Minimap (requires markers)
Shift + O Generate Cube Map (require marker)
F6 Toggle Editor Light - On / Off (default)
F8 Toggle Mode - Editor (default) / First Person (require spawn)
F12 Show Editor Console (provides some feedback)
Numpad - Toggle Unit Info Mode (uses FFM controls)
Numpad / Toggle Render View Stats Window

Alt + 1 (or 2) Static Layer
Alt + 3 Electric Layer
Alt + 4 Props Brush Layer
Alt + 5 Human Layer
Alt + 6 (or 7) Dynamic Layer
Alt + 8 Markers Layer
Alt + 9 AI Graph Layer

7

Space Enter / Exit “Free Flight Mode” (FFM)
W Move Forward in FFM (camera coordinates)
S Move Backward in FFM (camera coordinates)
A Move Left in FFM (camera coordinates)
R Move Right in FFM (camera coordinates)
E Move Upward in FFM (world coordinates)
Q Move Down in FFM (world coordinates)
Mouse Movement Rotate Camera
Scroll Forward Increase FFM Move Speed
Scroll Backward Decrease FFM Move Speed

N Toggle Place Alignment - Normal (default) / Grid
G Increase Grid Size
Shift + G Decrease Grid Size
Hold TAB Show Grid Plane

Mouse 1 Select Unit
Mouse 2 Place Unit
Mouse 3 Snap Rotate Selected Unit (45 degree ccw per click)
Mouse 4 Move Selected Unit (along Normal or on Grid)

B Pick Selected Unit Type (to use for “place unit”)
Home Reset Unit X & Y Rotation
Del Remove Selected Unit
Up Arrow Free Rotate Selected Unit, Y Axis (object coordinates)
Down Arrow Free Rotate Selected Unit, Y Axis (object coordinates)
Left Arrow Free Rotate Selected Unit, Z Axis (object coordinates)
Right Arrow Free Rotate Selected Unit, Z Axis (object coordinates)
Shift + Up Arrow Free Rotate Selected Unit, X Axis (object coordinates)
Shift + Down Arrow Free Rotate Selected Unit, X Axis (object coordinates)
Ctrl + Up Arrow Move Selected Unit Upward (world coordinates)
Ctrl + Down Arrow Move Selected Unit Downward (world coordinates)

That’s the controls to use. With that I think it’s time to move on to start creating a
level by taking a closer look at the Static layer.

8

Chapter 3: Static Layer
The main parts of any level are static units. Landscapes, buildings, plants and props
are all included in this category. Some have destructible, or dynamics versions which
are more expensive to use when it comes to performance, so try to use their static
counterparts as often as possible without sacrificing game play to gain better FPS.

When combining static units there come always the problem that you can’t load all
textures into memory at the same time. Because of this GRAW2 uses texture scopes
in GRAW2, which are defined per level and decided which texture atlases to use
when playing each specific level. Unlike in GRAW1 these will not be predefined for
you. The editor has access to all textures, so you won’t get any notice about this
problem in there, but once you play test the level inside the game you’ll get a blue and
yellow checker pattern where textures are missing. If this occurs you have the option
to either remove those props and maybe replace them with something else or expand
the texture scope. I’ll cover how to edit the texture scope later in chapter 13.

Landscape
The first thing you’ll have to add to any level is a landscape static unit, which will act
like the ground for the players to walk on. The available landscape units are found in
the Static layer [Alt+1] under the Landscapes sub-layer [Ctrl+3].

Many of the original SP/Campaign Coop landscapes have a built-in low-poly
backdrop which can’t be removed. Those low-poly houses also have low texture
quality and lack collision, so avoid designing a level among them. ;) The landscapes
also have roads and other ground deformations built in especially for the original
game design, which can’t be removed either obviously, but besides that they can be
used to build entirely new levels on. Some landscapes, like for mission01 and
mission07, have objects that are built to fit into the landscape very exactly, but are not
spawned with it when you place the landscape in the editor. If you want to use such a
landscape I suggest copying the files from the level using that landscape and cleaning
it of the units you don’t want which is fastest done inside the world.xml with an xml
editor, as for example trying to align the bridge in the mission01 landscape inside the
editor is virtually impossible.

Modders will be able to create their own landscape units. They need to be modelled
and UV-Mapped inside 3DS Max, then exported and setup with the required XML
files, upon which they will appear in the list among the other landscapes. That process
will not be covered in this tutorial.

Once you have selected which landscape you want to use, let’s move on to other
sub-layers.

9

Static
Back in the Static sub-layer [Ctrl+1] you’ll find all large static units like for
example houses and huge billboards. These are the main building blocks used to form
the level and create paths that the player can use. There is nothing really special about
these, so it’s just to pick what you want from the list and start building.

Small Static
In the Small Static sub-level [Ctrl+2] you’ll find all the smaller props that can be
used to add detail to your level. In here you can also find placeable effects (use mask
with “efx”), vegetation (use mask with “vgt”), and some usefully level design tools
like mover collisions to prevent players from going somewhere (use mask with
“mov”), the cover dummies for extra the AI cover points (use mask with “cov”) and
the ambient dummy for extra ambient sample points around props that appear black
(use mask with “amb”).

There are also static versions of some vehicles here. The difference between these and
those found in the dynamic layer is that these can’t be destroyed or moved in game,
and as such can be used to block paths you don’t want the player to go to or to add
more atmosphere where the player can look out in the near surrounding outside the
level and it would be unnecessary to have an performance expensive dynamic vehicle.

Although there are no dynamic vehicles in this layer that doesn’t apply to other props.
Many small props come in two versions but when that’s the case, the naming
convention varies some. One of them always has its type defined if there are two
versions though. If there is one version called “_dynamic”, that is obviously dynamic
and the other is static, and where there is one called “_static”, that one is obviously
static and the other dynamic. Don’t use dynamic props where the player can’t get to or
where you want to block the player from going. Dynamic props are much more
expensive to use and should be avoided on MP levels other then Campaign Coop
where there are few players as they have to be synced between the players and many
dynamic units will take a lot of bandwidth.

Besides destructible dynamic units, there are also non-destructible units that are
affected by the game physics, most notably the wind and collision with characters.
Where there are optional versions these have “_cloth_high”, “_cloth_low” or
“_wind” in their names. Like other dynamics objects, try to avoid these in MP levels
other then Campaign Coop.

Lastly there are AGEIA hardware props (use mask with “xag”). These are very CPU
expensive to use and should be avoided unless the map is made for AGEIA hardware
users. People with top of the line CPU can probably handle these anyhow, but make
sure to test the level on such a computer if you want to try and use them without an
AGEIA card.

That should cover the entire Static layer. Let’s move on to Dynamic.

10

Chapter 4: Dynamic Layer
In the Dynamic layer [Alt+6] you’ll find all the vehicles.

When placing dynamic units you’ll notice that they interact with the environment.
Hitting static units will make them rotate and they will also push other dynamic unit
around. From my experience the best way to place a dynamic object is to use FFM
and move as close to the position you want to place the unit at as possible, leave FFM,
select the unit in the list and place it carefully a little bit above the ground. It will fall
down and adjust itself to the shapes it now stands on. Avoid selecting the unit in the
list first and try to fly it in with FFM.

Cover
In the Cover sub-layer [Ctrl+1] all the dynamic vehicles that don’t have any AI or
animated sequences can be found. Most are just used as normal props, but there are
some special versions found here as well.

Some of these have built it fire effects, which are of course more expensive to use
then the versions without fire. These have “burning” in there names. Don’t use too
many of those on a level.

There are also heavy physics versions of the M1078 truck, whose covers are affected
by the wind. These have “_high” and “_low” in their name and should be used with
care like all other units for heavier physics settings.

Other then that, simply use these dynamic units like static units, but make sure it’s ok
that the player can move them from the position you have placed them.

Vehicle
In the Vehicle sub-layer [Ctrl+2] we find all the vehicles that have AI or are
pre-animated sequences. To make use of the AI vehicles you must have a Vehicle AI
Graph on the map.

Vehicles also need room if they are to move, so think about that when placing you
props and designing your level. They require clearance of about their double width to
be quite sure that they can pass narrow passages. They also require clearance upwards
which is calculated by the biggest vehicle in the game, so don’t place to much
overhanging details where you want the AI vehicles to be able to move.

Important to notice on vehicles is that they have a few options that affect how they are
used in the game.

First they need a unique name so you can call it from within your mission script to
spawn them if they aren’t spawned from start, remove them from the game world,
destroy them or use them inside conditions for triggers.

11

Second they need to be in the correct team slot, “friendly”, “hostile” or
“neutral” so they interact correctly with the player and hostiles.

Lastly they need to be prepared for how they are going to be used, a bit more
specifically how they are going to start the mission and if the player is going to be
able to interact with it. “Sequence spawn” starts the vehicle hidden from the world
and it has to be activated through the mission script. “Sequence death” starts the
vehicle as destroyed when spawned. “Enter_exit” sets if the player will be able to
enter or exit the vehicle and it will show in the game by displaying the “press x to
enter” or “press x to exit” messages to the player once close to an entry or exit
point.

Orders
You’ll notice that you can’t place paths for the vehicles to move along inside the
editor. All orders for vehicles have to be added in the mission script. Some of them
will require coordinates, which can be gotten in a few different ways.

The first is to use the Stats Window [Numpad /], which among other things show the
coordinates that the camera is currently at. This can be used to get a rough idea of the
coordinates you want.

The second is to place units on the map and giving them a specific name like
“vehcile1_waypoint_a” and so on and then saving the map. Exit the editor and open
the world.xml in your XML editor and to a search for the name you gave the unit. In
its data you’ll find the exact coordinates it was placed on, which you can then use
inside the mission script. Remember to remove those dummy units later.

It’s up to how exact you want to the coordinates to be, as well as if it’s a flying
vehicle or a ground based one of course. You’ll always have to test the paths in-game
to make the final adjustments in the end. When doing that, remember that vehicle
movements are FPS dependant. They operate like they should at about 35 FPS and up.
Under that they will start to deviate from the set path as they won’t reach the given
waypoints in time.

That’s all the info I can give you here. Let’s check out the Electric layer.

12

Chapter 5: Electric Layer
When you get to the Electric layer [Alt+3] you’ll see… nothing! No “unit list”
or other window that gives us any clue on what to do. Well, don’t worry because it’s
really simple. The only thing that can be done in this layer is placing wires to make
the level look more inhabited, to simulate electric wires or telephone wires for
instance.

This is done by right clicking [Mouse 2] where you want the wire to start, then right
clicking [Mouse 2] where you want the wire to end. While the wire is still selected
you can adjust the slack on the wire by using [Up Arrow] to decrease slack and [Down
Arrow] to increase slack. If you want to adjust the slack later on a wire, just select the
wire with a left click [Mouse 1] and use the arrow controls. You can’t move the start
and end points once they are placed though so if you want to move those simply select
and delete the old wire [Delete] and create a new one.

With nothing more to cover here, let’s move on to the Sound layer.

13

Chapter 6: Sound Layer
When you get to the Sound layer (which doesn’t have any keyboard shortcut), we find
an empty “unit list”. This is because there is only one type of unit to place in this
layer and the “unit list“ is instead used to list all the placed sound units currently
in the level.

To place a new sound unit, simply right click [Mouse 2] and it will appear at the
location where the camera is currently at. To remove a sound unit, select it in the
“unit list” by left clicking on it [Mouse 1] and hitting [Delete].

For each sound you place you are given the option to give it a “name”, which is only
used if you want to be able to reach it inside the mission script so it’s not commonly
used, and a “cue”. The “cue” should be given the name of the sound you want to
play. For a full list of the available sound cues in the original game, check out
appendix 1 at the end of this tutorial, besides all the sound cues it also lists which
sound banks each sound belongs to.

Now that the level has been given some more environment feelings, let’s move on to
the Props Brush layer.

14

Chapter 7: Props Brush Layer
The Props Brush layer contains grass; small debris units and decals used to add the
final touch to the levels. These are useful to remove repetition in larger units in the
level, and also add a more used feeling in the level.

These units are “painted” onto the level and are not found inside the “world.xml” like
the others. They are stored inside an encrypted “massunit.bin”, so if you want to
remove all units placed with this tool, simply remove that file before starting the
editor (or to be safe always save a copy somewhere in case you change your mind),
and they will all be gone once the editor has been started.

As this layer has a special brush tool, it also has special tool settings to control it.

Brush Controls:
Mouse 1 Paint units.
Mouse 2 Erase units.

Tool settings:
Random Roll Allowed random rotation of painted units.
Radius Size of brush to paint or erase units with.
Density Amount of units to paint per square meter.
Pressure Brush pressure. Max pressure paints entire density

directly. Lower pressure paints gradually up to
density setting.

Use Pressure When Erasing Toggle to use pressure value when erasing units.
Height Sets height of brush to create a volume when erasing.
Angle Override Locks angle to camera rotation.

In this layer the unit list contains all the units that can be painted onto the map
with the brush tool. The mask input field works exactly the same as in the other layers
to allow you the limit the units displayed, for instance input “vgt” to get small bushes
and grass. You can select as many units as you want at the same time by holding
down [Ctrl] while selecting. When you have more then one unit selected the brush
will place them randomly within the given brush size and each of them will be given
the random rotation set in the tool settings.

One important thing to notice is that there are three versions of each grass type. These
clip away at different distance from the player. It’s best to combine these where you
want grass so that it gets thicker the closer you get to the grass patch. Still you have to
be careful not to overuse the long range grass as it will reduce the frame rate a few
steps. Try not to paint grass to think in general, balance it.

Now the level should look detailed enough so let’s take a look at the AI Graph layer
in case the level is going to be used in a game mode with AI soldiers or AI vehicles,
otherwise you don’t need to place those.

15

Chapter 8: AI Graph Layer
The AI Graph layer [Alt+9] consists of two sub-layers. The default is the Human AI
Graph sub-layer which is most common to use, but it also contains the Vehicle AI
Graph sub-layer which you can toggle too by pressing [M].

Note: AI Graphs are only needed on maps that use human or ground vehicle AI units, so for normal
MP game modes no AI graph needs to be placed.

An AI Graph is a network of nodes, or navigation points for the AI, connected by
paths that the AI can use to travel between the nodes. Only one such network of each
type is allowed on each map. In other words all nodes in the Human AI Graph must
connect to each other, and all nodes in the Vehicle AI Graph need to connect to
each other. The connecting paths have a limited range, which is indicated by the circle
surrounding the mouse pointer while in this layer. This is so that they don’t try to
connect to nodes to far apart. When placing each node, take notice on how it
automatically connects the surrounding nodes and make sure that each of the new
paths don’t go through any object on the map or else the AI will think it can go there
even though it can’t and will end up walking towards the object and getting stuck.

AI Graph Controls:
Mouse 1 Select node.
Mouse 2 Create node.
Mouse 4 Move node.
Delete Delete selected node.

The Vehicle AI Graph allows for longer distance between each node as vehicles
need more space to move. When placing their AI Graph you should make sure that
there is enough space surrounding all the paths between the nodes for at least 2
vehicles in width. Also make sure that there is nothing hanging low over the path as
the vehicles require good clearance to come through.

The required density of the Human AI Graph depends on the surrounding area. The
AI will use the node points as primary stopping points when executing given orders,
so in open areas the distance between nodes should be longer to allow the AI to move
over that area faster. While close to objects the density should be higher, especially
close to corners when there should be a navigation node on each side because of the
cover system. The cover system is build up by cover points placed in the units before
they are exported from Max. Each cover points that doesn’t have a navigation node
within an engine defined radius, will be removed from use, all others are
automatically connected to the navigation point within their radius at level start so the
AI can use them.

The Vehicle AI Graph should never have high density, as mentioned before the
vehicles need more space the turn and move, and they also don’t use cover points.

16

Make sure that both the Human AI Graph and the Vehicle AI Graph covers all areas
of the map where the friendly or hostile AI of either type can move. The AI needs to
find nodes close to them so they know where they are allowed to go, or else they
won’t move. Flying AI doesn’t use the AI graphs.

AI Graph Generation
Once you have placed your graph it has to be calculated and encrypted into the
ai.gph and ai_course.gph files that the game will use. This is done by pressing
[Ctrl + K]. Now you’ll think that your computer has locked up, but it hasn’t.
Calculating the AI graphs takes a little while and there is currently no feedback on
how far it has come, not even inside the editor console [F12]. But once you can move
the mouse cursor again, it’s done and ready to be used in-game.

Make sure that the files created by calculating the AI graphs are connected to the level
inside the world_info.xml file, which is covered in chapter 13, or else they will not
be used.

Cover Point Generation
Once the AI Graph has been calculated you can also generate extra cover points
[Ctrl + F] that are based on the landscape itself, which will end up in a file called
coverpoints.xml in your level folder. This is not needed on city like maps that are
quite flat and have many buildings, because buildings already have built-in cover
points on all corners and other good cover positions, which will be used automatically
as long as there are AI graph nodes relatively close to them so they AI can find them.

This function is created to generate cover points on more open landscapes like rural
settings, and must have a calculated AI graph to work and as such is not needed on
levels that are not built to be played without AI units.

Note: What the editor does is look for variations in the level geometry around the AI graph nodes and
send out rays from such positions to check for good cover points that the AI may be able to make use
of.

Just like with the AI graphs you have to make sure that the extra cover points are
connected to the level inside the world_info.xml file, or they will not be used.

With that I think we should move on to the Human layer.

17

Chapter 9: Human Layer
The Human layer [Alt+5] contains all the human AI, hostile and friendly depending on
which unit you use. Each human node placed represents a group of AI units, whose
amount of soldiers varies depending on the selected group and is indicated by the
small red globes above their node. What units and what equipment they have, as well
as if the group is friendly or hostile, is defined in a file called “group_manager.xml”,
and can not be changes inside the editor. Once a human node has been placed or
selected you get an option box for it, in which you select what characteristics the
group has.

This layer reuses the same controls for different things depending on which order type
the group has been given and which mode you’re in.

Human controls:
Mouse 1 Select node.
Mouse 2 Create node.
Mouse 4 Move node.
Delete Delete selected node.

Sniper, SniperKneeling and SniperStanding order controls:
Mouse 3 Place cover cone center.

Guard order controls:
P Place guard zone.
Mouse 3 Place guard zone radius (after P has been pressed)
Mouse 4 Move human node.

Patrol order controls:
Insert Toggle to patrol path mode.
P Place first patrol path node
Mouse 1 Place patrol path node
Mouse 3 Remove last patrol path node in chain.
Mouse 4 Move human node.

18

Human node options:
Name Name of group (not needed).
Group ID The ID of the group which is used to call it inside the

mission scripts. This is important as you won’t be
able to activate the group unless you know the name
and all groups with the same name will answer to the
same script calls including condition checks.

Order How the group will behave once spawned. “Patrol”
will activate “patrol type” options.

Crew Define if the group is the crew of a vehicle. If they
are they will spawn with that vehicle and no
additional script command will be needed.

Transport ID If the group is defined as crew you have to give the
ID of the transport they belong to.

Group Type Defines which group template to use. The template
defines number of unit in group, each unit’s
equipment and looks as well as the group alignment.

Patrol Type When a group is set to “patrol” in “order”, you
here define which type of patrol it should be.

Order types:
Guard Will move around inside given zone.
Patrol Will use the given patrol type.
Sniper Will cover given cone area.
SniperKneeling Will cover given cone area always kneeling.
SniperStanding Will cover given cone area always standing.
None Will just stand still on the spot.

Patrol types:
Loop_Idle Follow patrol nodes in order and when at the end

start again with the first node to create an infinite
loop. AI will act relaxed.

Loop_Recon Follow patrol nodes in order and when at the end
start again with the first node to create an infinite
loop. AI will act alert and ready.

Moveguard_Idle Follow patrol nodes in order, which end in a guard
area that the AI will move around inside at random.
AI will act relaxed.

Moveguard_Recon Follow patrol nodes in order, which end in a guard
area that the AI will move around inside at random.
AI will act alert and ready.

Pingpong_Idle Follow patrol nodes in order and when at the end
follow them back in reversed order to create an
infinite oscillating path. AI will act relaxed.

Pingpong_Recon Follow patrol nodes in order and when at the end
follow them back in reversed order to create an
infinite oscillating path. AI will act alert and ready.

19

The Guard order uses a guard zone, which defaults to the groups’ position with a set
radius. It can easily be moved by pressing [P] to define the new center of the zone,
followed by using the middle mouse button [mouse 3] to set the outer limit of the
zone. You can also move the group away from the zone by using the thumb mouse
button [mouse 4] where you want to place the group. When the group starts outside
the guard zone they will begin by running to the zone as fast as possible. If you want
them to take it slow and follow a specific path you should give them a “moveguard”
patrol order instead.

The Sniper, SniperKneeling and SniperStanding orders allows you to define a
cone for the AI to cover. This sniper cone can be adjusted going pressing the middle
mouse button [mouse 3] at the point where the center of the cone, which the sniper
should concentrate at covering, should be. The difference between the different sniper
orders is only that you can force the AI to fold a standing or crouched stance to
prevent undesired stances in situations where they would create clipping of objects. If
the normal order is given the AI will act on its own.

The None order will simply leave the AI standing on the spot you place them.

The Patrol order allows you to define a patrol path which the AI will always try to
follow unless they have detected the player team. This is done by going into the
patrol path mode [Ins] with the unit selected and placing patrol nodes that
automatically becomes connected into a patrol path. By defining which patrol type it
should be you can decide how the AI will use the patrol path. Either they will follow
it until the end and then follow it back to the beginning, and continue like that forever,
which is the “pingpong” version. You can also make them “loop” the path, which
connects the first and last nodes into a never ending path. The last option is the have
the AI travel along the path until the end and then set up a guard zone for them there,
which is the “moveguard” version.

Make sure when making patrol paths that they don’t go through objects on which the
AI can get stuck. All patrol types are carried out at approximately the same speed. In
the alert versions, “recon”, they move a little faster then in relaxed, “idle”, but as
they also take cover very often which ends in a movement speed which is quite equal.

There isn’t much more then that involved in placing humans, so let’s move on to the
Locations layer.

20

Chapter 10: Locations Layer
The Locations layer is used to place zones or areas that can be used to either detects
things and through that act like triggers, or for pointing out targets for some of the
scripting events.

In this layer the “unit list” is used to list all the locations currently placed on the
level for quick access to them. There is also a special settings window in this layer
where you can select which location shape tool you want to use when placing the
location, as well as other settings for the locations themselves.

Location Settings:
Shape Set which shape tool to use when drawing the current

location.
Altitude Used to adjust the altitude of the location once it’s

been placed.
Name The name of the location which is used inside the

missions scripts to make use of it.
Height The height above the bottom plane for the location.

Used for “box”, “cylinder” and “polygon” shapes.

Location shapes:
box sphere Circle

cylinder square Polygon

“Square” and “circle” are 2D locations that are best to use on flat surfaces.
“Sphere” is a 3D volume the same height as width. “Box”, “cylinder” and
“polygon” has a “height” variable that defines how high above the placed area their
3D volume should cover.

Location Controls:
Mouse 1 Place location.
Mouse 2 Finalize selected location and create new location.
Mouse 4 Move location.
Delete Delete selected location.

Selecting already placed locations can only be done through the “unit list”
window by using the left mouse button [mouse 1].

Warning
The “polygon” locations tool is very unstable. Avoid using it if possible. If you have
to use it, save as soon as you’ve completed placing a location as the probabilities of
the editor crashing soon after or during are very high.

That’s it for locations; let’s move on to the Makers layer.

21

Chapter 11: Markers Layer
The Markers layer [Alt+8] is used to place markers to define minimap borders,
compass north direction, cubemap rendering spot and cinematic camera points. Once
you place a marker you’ll get a settings window which contains a list of the available
versions so that you easily can set the marker to the desired type.

Marker Controls:
Mouse 1 Select marker.
Mouse 2 Create marker.
Mouse 4 Move marker.
Delete Delete selected marker.

Markers Settings:
Name Name of the marker, which is important for

animation and cinematic markers so they can be
referred to from the mission script.

Type What the marker should be used for.
Altitude The markers altitude in the world.

Marker types:
Animation_Point Used with the “PlayCustomAnimation” script

element. See the scripting tutorial.
Camera_Cinematic Used to position the camera in cinematic.
Camera_Team_Select_A
Camera_Team_Select_B
Compass_North Coordinate to the north heading on the map.
Cubemap Coordinate to generate cubemap from.
Minimap Defines borders of the map for the minimap.
Target Used for aiming the camera in cinematic.

The most common use on this layer is the definition of the “minimap” borders. These
coordinates are important as they are used to calculate the icon locations on multi
player minimaps. They are also used by the minimap generation as that it also
corresponds to the correct coordinates. You can place any number of minimap
markers around the edge or the area that the player can use, but it will only use the
extremes when creating the minimap. In other words, the highest and lowest x and y
coordinates among the minimap markers. Those values have to be entered into the
maps world_info.xml as well, which will be covered later in chapter 13, so that the
character positions can be calculated.

The second most common use of the markers is to define the “compass north”
direction. This is needed for the compass on the player HUD to work properly.
Simply place it outside the map in desired direction.

22

The “cubemap” marker is used to define the position from which the levels cubemap
should be generated. The levels cubemap is used by all shaders where the
environment is reflected on surfaces, like windows and weapon scopes.

The “animation point” markers are used to define points to play custom animations
at through the mission.xml during cinematics.

Final there are the marker types used by the cinematic scripting in the mission.xml.
“target” is used to point the camera at something, while “camera_cinematic” is
used to define camera paths and locations. For more info on where these are needed,
look for the cinematic events inside the “GRAW2: Scripting for beginners”
tutorial.

That covers all the layers in the editor. Remember to save often in the editor as it is a
little unstable. Each time you save a new incremental “world_X.xml” file is created
which you can always go back to by using it to replace the “world.xml” file in your
level folder, so each save creates a new backup.

Now let’s take a look at some other functions inside the editor which you’ll most
likely need to use.

23

Chapter 12: Additional Editor Functions
There are some built in functions in the editor which aren’t layer dependant, and this
chapter will cover those.

First Person Mode
To quickly be able to test out if the placement of units is good for the game play, if it
possibly blocks the player from passing through a passage that you had planed to
allow the player to use or if the player can get outside the map somehow, you can
spawn in a player character and go into first person mode inside the editor. This is
done by first placing the mouse icon where you want to spawn the character followed
by pressing [L]. Now you’ll se the player character standing there on the map, which
can also be useful to check heights while building obstacles and such things. To get
into First Person Mode you simply press [F8] and now the controls are just like when
you control the character inside the game and you’re free to run around and shoot at
the environment. You can at any time press [F8] again and go back into Editor Mode
to continue working on the level or change anything you’ve noticed.

Minimap Generation
Once markers have been placed around the border of the playable part of the map,
generating the minimap is quick work by pressing [O]. You should have lightmaps and
silhouettes already generated when creating the minimap, or it will turn out looking
strange.

Note: When doing this you need to have the editor resolution (which is the same as the game resolution
set inside the game, not inside the editor) needs to be at least 1024 pixels in height, or you’ll get an
error message saying your resolution is too low for the generation to be successful. This makes the
1280x1024 resolution found under the 5:4 aspect ratios a good option as the lowest setting to allow
minimap generation.

The output files from the generation can be found inside the level folder, for example
inside the folder called “tutorial” use in this tutorial. In there you’ll find two
versions. The first is the map that is ready for use, which you can also spice up inside
any texture editing software of your choice like the original minimaps. The second is
the same map but generated with all the locations on it. This is to help when editing
the map for the Siege and Hamburger Hill game modes as those need visual
representations painted onto the minimap texture for their game critical locations so
the players can find them.

The minimap textures can be located inside the level folder itself and doesn’t need to
be placed in the textures folder like for the original maps. Which minimap to be used
with which game mode and the paths to find each minimap, is set inside the
world_info.xml, and we’ll take at how to set that up in chapter 13.

24

Cubemap Generation
The cubemap is used to create reflections of the environment in surfaces that have
been assigned shaders with that property, which include objects like windows and
weapon scope glass. You should have the lightmaps and silhouettes generated when
creating the cubemap or it will turn out looking strange.

To generate the cubemap [Shift + O] for a level you first need to have placed a
marker for it, from which it will generate 6 pictures needed to create an environmental
cube.

The generated cubemap will end up in a folder called “cubemaps” under your level
folder, which would be in “data/levels/custom_levels/tutorial/cubemaps” for
my example. You’ll have to assemble a cube map from these 6 pictures by combining
them in a picture editing software of your choice. They should be lined up on a single
384x64 pixel texture in a specific order and with specific rotations. There was never
an automated script done for this so we can’t provide one. The example below is of a
cube map assembled for the level Nowhere and the red numbers are the names of the
generated textures.

Exact order and rotation needed on the cube map:

Needed rotations on generated textures and order to be placed on new texture:
Cubemap 3 Rotate 90 degrees clockwise
Cubemap 4 Rotate 90 degrees counter clockwise
Cubemap 6 Shouldn’t be rotated.
Cubemap 5 Rotate 180 degrees
Cubemap 2 Rotate 90 degrees clockwise
Cubemap 1 Rotate 90 degrees counter clockwise

You should also level the new texture to make it brighter and with lower contrast. In
Photoshop for example you should use the “Brightness/Contrast” tool with
brightness set to around +35 and contrast to around -20.

Once done, save the cubemap with the name “cube” as either a DDS (DXT5) or a TGA
file into the cubemap texture folder dedicated to your level. It’s found under
“data/textures/custom_levels/” followed by your level name and then inside its
“cubemaps” folder, named “data/textures/custom_levels/tutorial/cubemaps”
for my example. This folder is already connected to the levels default texture scope
and should work right away in the game.

Note: The reason the generated picture are not put into the correct folder is that you don’t want to load
over4MB of textures into memory by mistake. The way it is now that can’t happen.

25

Lightmap Generation
Lightmaps are used in GRAW2 for larger units to reduce the system resources needed
to generate dynamics shadows for everything.

They need to be regenerated after objects that are not using dynamic shadows, which
are usually larger units, have been added, deleted or moved around. They also have to
be regenerated if ambient dummies have been added to lighten up a prop.

Ambient points are included in the landscape meshes as well as those for larger units.
They are used to set the light tone of props placed close to them by sampling how
dark the lightmap is at the ambient point’s position and then adding that to the props.
For this to work there has to be at least one ambient points close to each prop or the
props missing an ambient point close by will turn dark. As you can’t go into 3DS Max
and add ambient points exactly where you need then when these issues arise, there is
an ambient dummy that can be found in the Static layer [Alt+1] under the Small
Static sub-level [Ctrl+2] by using “amb” in the mask filter. Simply place one of
these dummies close by any unit that is dark and then regenerate the lightmaps so that
the dummies samples in the values to use, and that should solve the problem.

Lightmap generation starts to take very long time, so only do it when you absolutely
need it. You can test the level without lightmaps, or with old lightmaps, as they don’t
have to be generated they you want to create a bundle like it was in GRAW1. The
bundle tool is now a separate tool in GRAW2, which is not covered in this tutorial.
When you are about to generate a lightmap I suggest that you first turn on the Editor
Console [F12] as that is the only place you’ll get feedback on the lightmap generation
process. Then turn it on [Ctrl + Backspace] and go to bed or visit a friend.

Note: Lightmap generation at Grin usually took between 1 and 4 hours depending on the level size and
number of units on it, with render farms using 4 or 5 computers.

Tip: If you want to generate a faster lightmap you can edit the lightmap settings inside
sb_global.xml. Look for the two lines called “lightmap_render_quality” and
“lightmap_size_quality”, and then lower them from “medium” to “low”. This should cut
the rendering time to about 20-25% but with low quality. It can be good to just while testing and
evolving the level, and then setting it back to “medium” before generating the final lightmap before
distribution.

Once the lightmaps are generated they are located in a folder called “lightmaps”
under “data/textures/custom_levels“ and your level folder, which would be in
“data/textures/custom_levels/tutorial/lightmaps” for my example level.
This folder is already linked to the levels texture scope so that they are visible inside
the game and also in the editor directly after generation.

Note: It’s optional for you to create an atlas of the generated lightmap with the “atlasgen” tool.
This will make your lightmaps smaller and also add to the game play performance of your map. Look
in the atlas generator folder for more info on how to use it. Once an atlas has been generated you
should remove all the old TGA files or they will still be loaded into memory. Copy them to another
folder to begin with so you don’t have to regenerate them in case you get problems with the atlas
lightmaps.

26

Silhouette Generation
GRAW2 uses a silhouette system, which are the textures for the second LOD step
with baked in lightmaps. These needs to be generated for each map or the second
LOD step will look like blue and yellow checkers, which is not caused by errors in the
texture scope.

The generation is easy to do, simply press [Alt + Backspace] and the process will
begin just like with lightmaps. Once the silhouettes have been generated they will be
located in a folder called “silhouettes” under “data/textures/custom_levels”
and your level folder, which would for my example level be in
“data/textures/custom_levels/tutorial/silhouettes”. That folder is already
linked to the levels texture scope so that they should be functional inside the game
directly after generation.

Note: Just like with the lightmaps, it’s optional to create an atlas with the silhouettes by using the
“atlasgen” tool. This will enhance the performance of the map. Once this has been done, remember
to remove the TGA files generated by the editor so they don’t get loaded into memory together with
your new atlas.

Optimization Tools
There are two tools available in the editor for checking if levels and objects are
reasonably optimized.

Render View Stats
The Render View Stats window [Numpad /] shows the current fps, the number of
triangles currently being displayed in the camera view, the number of batches and
texture switches being used to generate the current picture, what the current triangle to
batch ratio is and also which position in the world that the camera is currently at.

With this tool turned on you can navigate around the map in free flight as well as
spawn in [L] a character which you can enter [F8] to make sure that you are seeing the
map at the correct level from the ground, and get direct feedback on the current status
of the level.

Example of Render View Stats info from Fort:

As you can see in the picture above, the editor will color code any info that is of
higher importance in the current frame. Red is bad, blue is good and green is good but
inefficient.

27

In the example above the triangle counts is ok as well as the number of batches being
sent to the processor. But the texture switch value is too high, which is caused by to
many different materials being used on the bodies currently being rendered in the
view. How to fix that is in the model itself is not important in this tutorial, but you
should try to keep these values away from red if possible. The triangle per batch ratio
is low because there are no high poly objects in the view at that time.

Unit Info Mode
This mode uses its own free flight camera and with it you can fly around and look at
stats and info on specific units. With this you can that way find which units are more
expensive to use as it will show how many objects it contains, as well as how many
polygons each of them contains, if they are instanced (which is good if you’re using
many of that object in the level), how many textures it uses and which textures it uses.

Warning: This tool is a bit unstable and can cause editor crashes quite often.

It also shows the locations inside the hierarchy for those textures, the materials.xml
file which defines the shaders used, the diesel file for the unit, as well as which max
file it was exported from and the location of it. Besides that useful info it also shows
who exported the unit last and what the unit name is.

Example of Unit Info Mode used on palm tree on Fort:

This mode will be very useful to check out custom units once they have been
implemented into the game to see if they should be optimized further inside 3DS
Max, or maybe be retextured with less textures to enhance game performance.

As seen in the example above, that units has two graphic objects and three collision
objects (which are used to reduce the processor usage while calculating physics), as
well as five textures where two are diffuse textures, two are normal maps and one is a
translucency mask for the leafs. The polygon count for the tree is 2150 triangles,
which is ok for such a large unit. If the vertices per triangle value for a mesh is over
1.00, that mesh should be looked over inside 3DS Max to try and optimize it more.

After these additional editor functions have been covered, it’s now time to take a look
at the final fixes on the outside of the editor so the level can be used in the game.

28

Chapter 13: Final Fixes
Once the editor work is done there are some files that need to be added for the level to
work in GRAW2. As this needs to be done in a certain way, I’ll start using examples
here which should be easy to follow. Like in chapter 1 I’ll be using a level in a folder
called “tutorial” for all examples.

Changing Environment
If you want another environment then the default one, which will get pretty boring
after a while, the following is what you need to do. To begin with you need an
environment file. The simplest way is to copy one from a map in the original game
that has the kind of setting you want.

I’ll use the environment file from “mission01”, so I copy the “environments.xml”
from that folder into my “tutorial” folder.

If you open the “environments.xml” file you’ll find a tag about 15-20 lines down
called “<env name=”default”>”. Inside that one you can see which of the different
post effects and skies in this XML that are used when the mission starts as default.

Mission01 default environments:
<env name="default">
 <adaption_light_effect value="m01_morning"/>
 <posteffect value="m01_morning"/>
 <sky value="m01_morning"/>
</env>

Any of the “post_effect” found in this XML can be used with the
“adaption_light_effect” and “posteffect” tag, as well as any “sky” can be used
with “sky” tag.

Inside the mission script you can also change environments as the mission progress.
When doing this it’s the name inside the “env” tag which should be used with the
appropriate script event, which you can find in the tutorial “GRAW2: Scripting for
beginners”. In the environment file used in this example there are three additional
environments that can be used from the mission script; “formiddag”,
“middlemorning” and “night”.

You can also create your own environment combinations by creating a new “env” tag
with the combinations you want, as well as create new “post_effect” and “sky”
elements to use. I’ll leave that for you modders to play around with.

Lastly you need to tell the level to look for the new “environments.xml” file but
adding “<environments path="environments.xml"/>” into the levels
“world_info.xml”, which we’ll look at in more details next in this tutorial. But after
adding that line you can start up the game and should now have another environment.

29

World Info
The world info file is the centre point for any level as it defines many elements of the
level to the game. It contains info on where the level can find all needed files, how it
can be played and how it should appear in the lists inside the game. I’ll try to explain
as much as possible about this file with the help of two examples.

Single Player and Campaign Coop Example
Let’s take a look at one of the original world_info.xml files from a campaign level
to begin with.

Example world_info.xml for the “mission01” level:
<?xml version="1.0" encoding="UTF-8"?>
<world_info path="/data/levels/common/campaign_settings.xml"
 name="mission01" mission_time="day">
 <world path="xml/world.xml"/>
 <mission_script path="mission.xml"/>
 <info_strings name_id="campaign_mission_1"/>
 <environments path="environments.xml"/>
 <massunits path="massunit.bin"/>
 <sound>
 <soundbank name="act01_memo_music_sound" type="memorable"/>
 <soundbank name="act02_memo_music_sound" type="memorable"/>
 <soundbank name="act03_memo_music_sound" type="memorable"/>
 <soundbank name="act04_memo_music_sound" type="memorable"/>
 <soundbank name="ambience_shanty_morning_sound" type="ambient"/>
 <soundbank name="mission01_sound"/>
 <soundbank name="music_act01_sound" type="mood"/>
 </sound>
 <texture_scope path="texture_scope.xml"/>
 <extra_coverpoints path="coverpoints.xml"/>
 <campaign name="graw2" act="1" order="1" coop="true">
 <candidate name="BEASLEY" kit="" def_team="true"/>
 <candidate name="BROWN" kit="" def_team="true"/>
 <candidate name="HUME" kit="" def_team="false"/>
 <candidate name="JENKINS" kit="" def_team="false"/>
 <candidate name="MITCHELL" kit="" def_team="true"/>
 <candidate name="RAMIREZ" kit="" def_team="true"/>
 <block_weapon name="barrett"/>
 <block_weapon name="hk21e"/>
 <block_weapon name="m32"/>
 <block_weapon name="predator" coop="true"/>
 </campaign>
 <texture name="loading"
 texture="data/textures/atlas_gui/mission_gfx/load_sp_m01"
 uv_rect="0,0,2048,1080" width="2048" height="2048"/>
 <texture name="minimap" texture="/data/levels/mission01/minimap"
 uv_rect="0,0,1024,951" width="1024" height="1024"/>
 <graph name="coarse" path="ai_coarse.gph"/>
 <graph name="main" path="ai.gph"/>
 <border name="minimap" min_x="-12821.985" min_y="-11086.894"
 max_x="17869.268" max_y="17421.324"/>
</world_info>

30

In the main tag called “world_info”, we find attributes that defines the mission
name. The name has to be UNIQUE of the mission will not show up in the lists. Here
you’ll also set if the mission is played during “day” or “night”, which affects if lights
should be turned on or not on vehicles and such.

The above example is a world_info.xml file used for a map that only has one game
mode, as single player and campaign coop are setup as a combined game mode.
Because of this the path to the *_settings.xml for that mode is also defined in the
main tag. We’ll take a look at how to implement multiple game modes into a single
world_info.xml later. Also refer to the tutorial “GRAW”: MP Game Modes” for more
info on this.

Next you see a tag called “world” that defines the path to the world.xml, which is the
file that contains most of the work you’ve done inside the editor. This tag is set in the
default world_info.xml that is created once you first save your level in your folder.

Default world tag:
<world path="world.xml"/>

After that comes the ”mission_script” tag that defines the path to the mission.xml
that contains your mission script. Even levels only using the unified game modes uses
the mission.xml, and its contents in those cases is covered in the “GRAW”: MP Game
Modes” tutorial.

The “info_strings” tag defines the name of the mission to be shown in the Single
Player mission selection screen. It needs to be given the name of a string defined
inside a strings.xml file. To include a strings.xml file for your custom mission,
you’ll have to add another attribute here called “path” and set it to “strings.xml”.
With the help of this you can now create your own mission specific strings.xml file
inside your custom mission folder to handle all your info tags, briefing texts,
waypoint tags, objective info and so on. We’ll cover the simple syntax of the
strings.xml file later in this chapter.

Example of modified “info_strings” tag for custom missions:
<info_strings name_id="campaign_mission_1" path="strings.xml"/>

The “environments” tag was covered briefly in the last section, and it defines which
environment file to use for the map. As default this tag is given the path to the default
environment file when a level is first created.

The “massunits” tag defines the path to the massunit.bin file, which is the file
containing all the units placed in the props brush layer. Without this tag those units
will not be used when the mission is played. This should also be set by default.

Next in line is the “sound” tag which contains info on which sound banks should be
used with the mission. I’m no expert on this tag, but you can see how “memorable”
music, the default “ambient” sounds and the “mood” music are defined in the
example. This only defines which sound banks should be preloaded. Using sound not
part of a defined sound bank inside the mission should work but it needs to load at the
moment it is first played.

31

The “texture_scope” tag defines where the file containing info on which texture
atlases should be loaded when the mission is played can be found. This is a very
important file. If the content of the texture scope is wrong you’ll get blue and yellow
checkers showing on objects as the textures for them are not included in the atlases
you’ve defined the game to load. The texture scope also has to include the folder used
for the lightmap. We’ll cover editing the texture scope later in this chapter.

The tag called “extra_coverpoints” is only used on some levels that are setup to
use AI. It’s not needed on city maps as all larger static units have built in cover points
that will be used close to corners and other good positions. So unless your level is
rural or very open, you should comment out or remove this tag from the
world_info.xml. The cover points defined inside that file are calculated
automatically by the editor when generating the AI graphs.

The “campaign” tag is the main tag that decides where the mission will be listed in
single player; if it can be played in campaign coop as well, which team members
are in the default team and which weapons that are not shown in the inventory lists (in
other words are blocked from use on the mission).

The attribute “name” defines which campaign it should be listed in. That’s right; there
is support for multiple campaigns in GRAW2. If it’s set to “graw2” the mission will
show up in the default mission list. If it’s set to something else, an additional control
will show up in the upper right corner of the mission selection screen, which lets the
player switch between campaigns. “Act” decides under which act it should be listed
and “order” is which mission inside that act it should be. “Act” set to “0” will list the
mission above the acts like “Training Grounds”, which is where missions that don’t
need to be unlocked must be placed. Lastly there is the attribute “coop”, which
decides if the mission can be seen in the campaign coop create server menu.

Note: There is a possible conflict situation here as two missions can’t have the same act and order
settings. If they do only the mission with the highest priority will be seen.

By setting the “def_team” attribute to true on any team member, they will default
into the mission team when entering the team selection in single player. Which kit
they should use can be set in the “kit” attribute, where “_m02” would for example
give the kit designed for mission02. The kits themselves are defined inside the
data/lib/managers/xml/ghost_templetes.xml file.

The “block_weapon” tag removes the weapon from the inventory lists in single
player, but if it’s given the “coop” attribute set to “true” it will apply to campaign
coop as well. To find the internal name used for each weapon in GRAW2, take a look
in appendix 2 in “GRAW”: MP Game Modes” where they are all listed.

32

The “texture” tags works just like explained in the tutorial “GRAW”: MP Game
Modes”. When giving the “name” attribute the value “loading”, you define which
texture to use for the loading screen, and when giving it the value “minimap” you
define which texture to use for the minimap. Minimap is not required for single
player or campaign coop as it’s not used. The “uv_rect” attribute needs the
coordinates for where the upper left corner and the lower right corner of the area to be
displayed from the texture is. It should be given in pixels. Lastly you should define
the “width” and “height” of the entire texture you want to use.

The “minimap” texture should, for my level that’s called “tutorial” be set to the
look inside the level folder itself for a file called “minimap”, which is the name and
the location of the minimap generated by the editor. It also uses a full 1024x1024
pixel texture, so the rest of the attributes are easy to get correct.

Default “minimap” tag for “tutorial” level:
<texture name="minimap"
 texture="/data/levels/custom_levels/tutorial/minimap"
 uv_rect="0,0,1024,1024" width="1024" height="1024"/>

There are two different uses for the “graph” tag. The first is to set it to “main”, which
should define which AI graph to use. The second is to set it to “course”, which also
points to an AI graph, but this one has a lower density and is used when the AI needs
to navigate over longer distances and will then use fewer stop locations to move
faster. Both files are generated in the levels folder when calculating the AI graph as
described in chapter 8.

Lastly in the example above we find a “border” tag. This defines the borders defined
for the minimap inside the editor. It requires values found inside the world.xml file in
the form of coordinates to the minimap markers to create a rectangle around the
playable area to use when calculating the position of the icons on it in multiplayer.

To get these values you need to open the world.xml in a text browser or XML editor.
Do a search for “minimap” and you’ll quickly find the minimap markers inside that
file. Copy those into a new document so we can clean out the parts we need.

Example of minimap markers found inside mission01 world.xml:
<marker name="" type="minimap">
 <position pos_x="-12821.985" pos_y="9525.5225" pos_z="9659.4834"/>
 <rotation yaw="-78.921143" pitch="0.0010194057" roll="-140.63948"/>
</marker>
<marker name="" type="minimap">
 <position pos_x="8064.0854" pos_y="17421.324" pos_z="9035.6865"/>
 <rotation yaw="-40.824047" pitch="-0.000204905" roll="120.44201"/>
</marker>
<marker name="" type="minimap">
 <position pos_x="17869.268" pos_y="-2202.4155" pos_z="7623.9951"/>
 <rotation yaw="-34.744892" pitch="-0.000800839" roll="122.86446"/>
</marker>
<marker name="" type="minimap">
 <position pos_x="-10609.501" pos_y="-11086.894" pos_z="6056.4604"/>
 <rotation yaw="-33.764946" pitch="-0.00140531" roll="-66.985222"/>
</marker>

33

There can be any number of minimap markers used, but we are only interested in the
extreme positions. So after you have copied the entries, delete all lines except those
holding position coordinates. In the position tags you can remove everything besides
the “pos_x” and “pos_y” and their given values.

Cleaned minimap marker list:
pos_x="-12821.985" pos_y="9525.5225"
pos_x="8064.0854" pos_y="17421.324"
pos_x="17869.268" pos_y="-2202.4155"
pos_x="-10609.501" pos_y="-11086.894"

Now we can easily get the highest and lowest “pos_x” values and enter them as
“max_x” (17869.268) and “min_x” (-12821.985), as well as the highest and lowest
“pos_y” value and enter them into “max_y” (17421.324) and “min_y” (-11086.894).

That is all the entries inside that world_info.xml. Now we’ll take a look at the
differences inside one from a multiplayer level.

Multiplayer Game Mode Example
As all the different tag types where covered in the last section, this section will only
cover what is special about setting up the world_info.xml for a level that supports
multiple game modes.

Example world_info.xml from the “nowhere” level:
<?xml version="1.0" encoding="UTF-8"?>
<world_info name="nowhere" mission_time="day">
 <world path="xml/world.xml"/>
 <mission_script path="mission.xml"/>
 <environments path="environments.xml"/>
 <massunits path="massunit.bin"/>
 <sound>
 <soundbank name="ambience_park_night" type="ambient"/>
 <soundbank name="avr_nowhere_sound"/>
 <soundbank name="music_act01_sound"/>
 </sound>
 <texture_scope path="texture_scope.xml"/>
 <texture name="minimap"
 texture="/data/textures/gui/nowhere_minimap"
 uv_rect="0,0,1024,792" width="1024" height="1024"/>
 <border name="minimap" min_x="-10676.768" min_y="-6114.8867"
 max_x="18646.32" max_y="16576.049"/>
 <world_info path="/data/levels/common/tdm_settings.xml" type="tdm">
 <texture name="loading"
 texture="data/textures/atlas_gui/mission_gfx/load_mp_tdm_dm"
 uv_rect="0,0,2048,1080" width="2048" height="2048"/>
 </world_info>
 <world_info path="/data/levels/common/dm_settings.xml" type="dm">
 <texture name="loading"
 texture="data/textures/atlas_gui/mission_gfx/load_mp_tdm_dm"
 uv_rect="0,0,2048,1080" width="2048" height="2048"/>
 </world_info>
</world_info>

34

The level in this example is only setup for two game modes, but you can of course
just repeat the game mode specific parts infinite number of times to accommodate any
number of game modes you want setup on your map. More info on setting up
everything for each specific game mode can be found in the companion tutorial
“GRAW”: MP Game Modes”.

The first difference you can see in this world_info.xml is that it’s much smaller.
That’s because many of the items in the previous example are only needed when in
single player or campaign coop, or when using AI in the game mode like done in
coop. These nodes include the “info_strings”, “graph” and “campaign” tags.

When you look closer at the tags you’ll also notice a difference in the main
“world_info” tag, which doesn’t have an attribute that defines which
*_settings.xml to be used. This is because each game mode defined on a level
MUST have a separate *_settings.xml file. So this will be defined later in the game
mode specific sections.

Besides the differences mentioned above, the file looks basically the same besides
having another “world_info” tags inside the main one. These are the game mode
specific areas. This map only has two game modes, TDM and DM. Each has its own
“world_info” tag inside the main “world_info” tag. Let’s take a look at one of
them, the TDM tag.

Masked out TDM game mode specific parts:
<world_info path="/data/levels/common/tdm_settings.xml" type="tdm">
 <texture name="loading"
 texture="data/textures/atlas_gui/mission_gfx/load_mp_tdm_dm"
 uv_rect="0,0,2048,1080" width="2048" height="2048"/>
</world_info>

As you can see it is here defined which *_settings.xml to be used for this game
mode by assigning it to the “path” attribute in this internal tag. It also specifies which
tag name the game mode has by assigning it to the “type” attribute, which should be
the same tag name as defined inside the *_settings.xml used.

Everything that is included inside the “world_info.xml” will only be used once the
TDM game mode is being played. In this case the only difference is which loading
screen to be used, but any of the other tags could be included here as long as make
sure that every game mode gets there needed tags defined. If you want to use a game
mode that has AI graph you only need to include the “graph” nodes inside that game
modes specific area. But if you want to assign a different environment for a game
mode, each game mode must have an environment defined inside them as you always
have to have and environment to play a level in any mode.

35

Example of different environment implementation:
<world_info path="/data/levels/common/tdm_settings.xml" type="tdm">
 <environments path="environments_tdm.xml"/>
 <texture name="loading"
 texture="data/textures/atlas_gui/mission_gfx/load_mp_tdm_dm"
 uv_rect="0,0,2048,1080" width="2048" height="2048"/>
</world_info>
<world_info path="/data/levels/common/dm_settings.xml" type="dm">
 <environments path="environments_dm.xml"/>
 <texture name="loading"
 texture="data/textures/atlas_gui/mission_gfx/load_mp_tdm_dm"
 uv_rect="0,0,2048,1080" width="2048" height="2048"/>
</world_info>

There isn’t much more to say about the world_info.xml actually. Just that if there
are files you don’t have, like coverpoints.xml, make sure to remove those tags
inside the world_info.xml. Now let’s move on to the texture scope.

Texture Scope
The next we need to look at is setting up the texture scope for the level to remove all
possible checkers. Remember that if it’s only a few objects that obtain blue and
yellow checkers you should maybe remove those instead of changing the texture
scope to gain better performance on the map, but it’s up to you of course.

In your new levels folder, “tutorial” in my case, you should have a basic
texture_scope.xml file. Inside the file you’ll find a list of all the atlases in the
game, but many of them are commented out and as such are not used right now.

To remove the possible checkers you’ll need to do some testing at this stage, which
can’t be done inside the editor as it has access to all textures in the game. You’ll have
to try and uncomment an extra atlas and then testing in-game if it solved the problem
on any of the checker units. If it did, they keep it, if it didn’t then comment it back out
and try another one. Repeat these steps until you have all the textures you need visible
inside the game. Once again, if there is an atlas that only helps with very few units,
you should think it over if those are really needed of they should be removed instead
of their atlas added to the texture scope, which would give better performance.

This is a bit different from what we did at Grin as we defined many atlases after the
levels, not the other way around. But it’s the only way to do it when mixing units
from different levels. But you can get a hint in some unit names which atlas they
belongs to. Especially buildings and larger units usually have a prefix, like “city_”,
that besides being good for sorting in the lists also refers to which atlas it uses.

In the texture scope we also have to define the path to where the levels lightmaps are
located and the same for the silhouettes and the cubemap, but those parts are already
defined and should work with their default values for your level.

36

Strings
The syntax of the strings.xml file is very simple. It contains a main tag called
“stringset” inside which all the strings are defined with the help of an element
called “string”.

You give each “string” element the attribute “id” which you set to the name of the
string to be used when calling for it, so this has to be unique or you’ll get problems. A
good rule is that always start the id with the level name followed by “_” and then a
short description of either what it is to be used for or what it contains. After that you
add an attribute called “value” which you give the string text you want to have. It’s
as simple as that.

Example of strings.xml syntax:
<stringset>
 <string id="title_m01" value="Search and Destroy"/>
</stringset>

There are a few special characters that can be used inside the string values to create
line breaks “\n” and other formats. Check inside the original strings files found under
“data/strings” if you want to use them.

Outro
That covers the tools included in the editor used to develop GRAW2 and some
addition aspects that needs to be worked on to make a level playable inside the game.
I hope this document answers a few questions at least, even though I guess it will also
raise a few. The provided tutorials in combination should provide a good starting
point for modders to evolve their own game play experiences.

Good Luck.

Grin_Wolfsong, out.

37

Appendix 1: Environmental Sound Cues
This appendix contains a list of some of the sounds found inside GRAW2
.

Sound Cues

A
aa_1shot 1 missile fired from distant aa cannon
aa_40shot 40 shot burst from distant aa heavy machinegun
aa_bh_shake played in BlackHawk when hit by aa fire
aa_explosion aa mid-air explosion
ac_hum humming of external wall mounted ac
ad_pillar_collapse ad pillar destroyed (by explosion)

B
baby_cry one non-looped baby cry
barrel_pristine_impact impact sound of pristine barrel
barrel_rusty_impact impact sound of rusty shanty town barrel
bird_a one non-looped bird call from bird "a"
bird_b one non-looped bird call from bird "b"
bird_c one non-looped bird call from bird "c"
bird_d one non-looped bird call from bird "d"
bird_e one non-looped bird call from bird "e"
bird_f one non-looped bird call from bird "f"
bird_g one non-looped bird call from bird "g"
birds randomly selects a bird (a-g) and loops it eternally
blast electricity spark from broken circuit box
branch_small_rustle rustle of small branch (e.g. player brushes against

bush)
brick_impact non-looping sound of brick falling from ruin (to be

triggered with visual effect)
brick_kick sound of a brick being kicked across the ground
buzz looped buzz from circuit box

C
cafe_chair_impact iron chair bump
cafe_table_impact iron table bump
cardboard_box_impact cardboards box bump (from falling, e.g.)
child_cry one non-looped child cry
cistern_loop looped dripping sound from metal cistern

38

coin_spit non-looping sound of vending machine or similar
spewing out coins for app. two seconds

coin_stone non-looping sound of a coin dropping to the ground
container_shake sound of steel container set vibrating by a bullet hit
crickets randomly picks one of three cricket sounds and loops

eternally
crows randomly picks one of five crow sounds and loops

eternally

D
debris_large_impact generic sound of large debris to ground
debris_medium_impact generic sound of medium debris to ground
debris_small_impact generic sound of small debris to ground
drainage_loop looping sound of a slurping water drainage

F
factory randomly picks one of five muffled factory noises

and loops eternally
fire_large_10 sound of large fire playing for app. ten seconds
fire_large_120 sound of large fire playing for app. 120 seconds
fire_large_15 sound of large fire playing for app. 15 seconds
fire_large_20 sound of large fire playing for app. 20 seconds
fire_large_30 sound of large fire playing for app. 30 seconds
fire_large_5 sound of large fire playing for app. five seconds
fire_large_60 sound of large fire playing for app. 60 seconds
fire_large_90 sound of large fire playing for app. 90 seconds
fire_large_loop sound of large fire looping eternally
fire_small_10 sound of small fire playing for app. ten seconds
fire_small_120 sound of small fire playing for app. 120 seconds
fire_small_15 sound of small fire playing for app. 15 seconds
fire_small_20 sound of small fire playing for app. 20 seconds
fire_small_30 sound of small fire playing for app. 30 seconds
fire_small_5 sound of small fire playing for app. five seconds
fire_small_60 sound of small fire playing for app. 60 seconds
fire_small_90 sound of small fire playing for app. 90 seconds
fire_small_loop sound of small fire looping eternally
flag_loop sound of flag flapping and wire hitting flag pole,

looping eternally
flies_loop sound of flies, heard up to 20 meters, looping

eternally
flies_loop_small sound of flies, heard up to 10 meters, looping

39

eternally
foliage 2d sound of wind in a grove of trees, heard up to 30

meters, looping eternally
foliage_rustle_occasional non-looping 3d sound of wind in foliage, heard up to

30 meters
fountain_large_loop water flowing in large fountain, looping eternally
frogs_loop sound of frogs, looping eternally

G
glass_break_big window blown out by explosion
glass_break_small smaller window blown out by explosion
gravel eternally looping sound of occasional gravel falling

in quarry
grenade_frag_explode frag grenade explosion

H
hangar_door_open hangar door opening, 6 seconds from start to stop

I
intruder_alarm alarm woop (one single non-looping sound)
intruder_alarm_break sound of electronics breaking and distorted speaker

feedback
intruder_alarm_broken broken alarm woop (one single non-looping sound)
intruder_alarm_button push of alarm button

L
large_rock_impact sound of a large concrete slab or rock hitting the

ground hard
lightbulb_break lightbulb breaking (from damage (explosion, bullet)

or falling to ground)

M
magslide_out weapon reload
man_scream one non-looped man screaming in pain
man_shout one non-looped man pleading in desperation
metal_creak metal creak sound (e.g. marquee or parasol folding)
mortar_1shot firing of mortar shell far, far away (low, rumbling

sound)
mortar_drop three second "screaming" sound of mortar falling (to

precede the explosion sound of the mortar shell)

40

mortar_explode explosion sound of a mortar shell

O
ocean_loop randomly selects one of two sounds of open water

and loops it eternally

P
paper_cup_impact paper cup kicked across ground
pigeons_loop eternally looping sound of pigeons, to be played by

pigeons on ground and stopped when they take off
pigeons_takeoff non-looping sound to be played from the "effect" of

pigeons taking off
plank_impact plank bump (piece of collapsed wooden crate)
pot_large_shatter large clay pot shattering (shot to pieces)
pot_shard_impact piece of destroyed clay pot hitting the ground
pot_small_shatter small clay pot shattering (shot to pieces)

R
rattlesnake eternally looping sound of occasional rattlesnake

noise
roadsign_impact metal road sign falling to ground
rooftop eternally looping sound of occasional noise from a

rooftop (bottles falling over, gusts of wind, hinges
creaking

rooftop_randomizer randomly plays one non-looping sound from the
"rooftop" sound (above)

rpg7_explode enemy RPG missile exploding (hitting target)
ruins non-looping sound of dust falling from ruins (to be

triggered with visual dust effect)

S
scrambler_explode scrambler being shot to pieces
scrambler_loop eternally looping sound of scrambler affecting the

HUD (effective up to 100 meters)
seagulls eternally looping sound of occasional seagull bird

calls (can be used to "diffuse" the above sound, or all
by itself)

seagulls_loop eternally looping sound of constant seagull noise (as
no seagulls are visible, preferably place this sound
behind rocks)

shatter_glass sound of glass shards falling to the ground (beneath
broken window)

41

shatter_glass_big larger glass object shot to pieces (shards sent flying)
shatter_glass_small small glass object shot to pieces (no shards sent

flying)
shovel_impact shovel falling to ground
soda_can_impact soda can kicked across ground
squeaky_door_close non-looping sound of squeaky "shanty town style"

door closing
squeaky_door_open non-looping sound of squeaky "shanty town style"

door opening
stones eternally looping sound of occasional stones falling

in quarry

T
togo_box_impact takeaway food carton kicked across ground
tunnel eternally looping 2d sound of tunnel ambience

audible up to 60 meters - useful also to create
indoors ambience in e.g. a hangar

W
wave_splash non-looping sound of wave spashing against rocks

(to be triggered by visual water effect)
whistle one non-looped mouth whistle
woman_cry one non-looped woman cry
wooden_crate_collapse wooden crate blown apart
wooden_crate_impact wooden crate bump (from falling, e.g.)

42

	 Chapter 1: Getting Started
	Requirements
	Preparations

	 Chapter 2: Interface
	Rendering
	 Layers
	Sub-Layers
	Unit List
	Commands

	 Chapter 3: Static Layer
	Landscape
	 Static
	Small Static

	 Chapter 4: Dynamic Layer
	Cover
	Vehicle
	Orders

	 Chapter 5: Electric Layer
	 Chapter 6: Sound Layer
	 Chapter 7: Props Brush Layer
	 Chapter 8: AI Graph Layer
	AI Graph Generation
	Cover Point Generation

	 Chapter 9: Human Layer
	 Chapter 10: Locations Layer
	Warning

	 Chapter 11: Markers Layer
	 Chapter 12: Additional Editor Functions
	First Person Mode
	Minimap Generation
	 Cubemap Generation
	 Lightmap Generation
	 Silhouette Generation
	Optimization Tools
	Render View Stats
	Unit Info Mode

	 Chapter 13: Final Fixes
	Changing Environment
	 World Info
	Single Player and Campaign Coop Example
	Multiplayer Game Mode Example

	Texture Scope
	 Strings
	Outro

	 Appendix 1: Environmental Sound Cues
	Sound Cues
	A
	B
	C
	D
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	W

